翻訳と辞書
Words near each other
・ Szladits' Bibliography on Foreign and Comparative Law
・ Szlaga-Młyn
・ Szlagnowo
・ Szlak Batorego
・ Szlakiem Grodów Piastowskich
・ Szlama Ber Winer
・ Szlama Grzywacz
・ Szlamica
・ Szlamy
・ Szilard (crater)
・ Szilard Voros
・ Szilard–Chalmers effect
・ Szilas
・ Szilasliget
・ Szilaspogony
Szilassi polyhedron
・ Szilsárkány
・ Szilveszter Csollány
・ Szilveszter E. Vizi
・ Szilveszter Fekete
・ Szilveszter Hangya
・ Szilveszter Matuska
・ Szilvia
・ Szilvia Freire
・ Szilvia Lengyel
・ Szilvia Mednyánszky
・ Szilvia Péter Szabó
・ Szilvia Ruff
・ Szilvia Szabó
・ Szilvia Szeitl


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Szilassi polyhedron : ウィキペディア英語版
Szilassi polyhedron

The Szilassi polyhedron is a nonconvex polyhedron, topologically a torus, with seven hexagonal faces.
Each face of this polyhedron shares an edge with each other face. As a result, it requires seven colours to colour each adjacent face, providing the lower bound for the seven colour theorem. It has an axis of 180-degree symmetry; three pairs of faces are congruent leaving one unpaired hexagon that has the same rotational symmetry as the polyhedron. The 14 vertices and 21 edges of the Szilassi polyhedron form an embedding of the Heawood graph onto the surface of a torus.
The tetrahedron and the Szilassi polyhedron are the only two known polyhedra in which each face shares an edge with each other face. If a polyhedron with ''f''  faces is embedded onto a surface with ''h''  holes, in such a way that each face shares an edge with each other face, it follows by some manipulation of the Euler characteristic that
:h = \frac.
This equation is satisfied for the tetrahedron with ''h'' = 0 and ''f'' = 4, and for the Szilassi polyhedron with ''h'' = 1 and ''f'' = 7. The next possible solution, ''h'' = 6 and ''f'' = 12, would correspond to a polyhedron with 44 vertices and 66 edges, but it is not known whether such a polyhedron exists. More generally this equation can be satisfied precisely when ''f''  is congruent to 0, 3, 4, or 7 modulo 12.
The Szilassi polyhedron is named after Hungarian mathematician Lajos Szilassi, who discovered it in 1977. The dual to the Szilassi polyhedron, the Császár polyhedron, was discovered earlier by ; it has seven vertices, 21 edges connecting every pair of vertices, and 14 triangular faces. Like the Szilassi polyhedron, the Császár polyhedron has the topology of a torus.
==References==

*.
*.
*.
*.
*.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Szilassi polyhedron」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.